Host-Specific Functional Significance of Caenorhabditis Gut Commensals
نویسندگان
چکیده
The gut microbiota is an important contributor to host health and fitness. Given its importance, microbiota composition should not be left to chance. However, what determines this composition is far from clear, with results supporting contributions of both environmental factors and host genetics. To gauge the relative contributions of host genetics and environment, specifically the microbial diversity, we characterized the gut microbiotas of Caenorhabditis species spanning 200-300 million years of evolution, and raised on different composted soil environments. Comparisons were based on 16S rDNA deep sequencing data, as well as on functional evaluation of gut isolates. Worm microbiotas were distinct from those in their respective soil environment, and included bacteria previously identified as part of the C. elegans core microbiota. Microbiotas differed between experiments initiated with different soil communities, but within each experiment, worm microbiotas clustered according to host identity, demonstrating a dominant contribution of environmental diversity, but also a significant contribution of host genetics. The dominance of environmental contributions hindered identification of host-associated microbial taxa from 16S data. Characterization of gut isolates from C. elegans and C. briggsae, focusing on the core family Enterobacteriaceae, were also unable to expose phylogenetic distinctions between microbiotas of the two species. However, functional evaluation of the isolates revealed host-specific contributions, wherein gut commensals protected their own host from infection, but not a non-host. Identification of commensal host-specificity at the functional level, otherwise overlooked in standard sequence-based analyses, suggests that the contribution of host genetics to shaping of gut microbiotas may be greater than previously realized.
منابع مشابه
Commensal gut bacteria: mechanisms of immune modulation.
Mucosal immune responses to pathogenic gut bacteria and the mechanisms that govern disease progression and outcome have been researched intensely for decades. More recently, the influence of the resident non-pathogenic or 'commensal' microflora on mucosal immune function and gut health has emerged as an area of scientific and clinical importance. Major differences occur in the mucosal immune re...
متن کاملImmunology: You Remind Me of a Microbe I Know
The majority of bacteria found within the gut are commensals, although it is unclear whether these organisms can elicit systemic immunity. New research indicates that gut-microbiota-specific serum antibodies targeting an epitope conserved among Gram-negative bacteria can protect the host from systemic pathogenic infection.
متن کاملExploring Host–Commensal Interactions in the Respiratory Tract
Commensal microbes are currently in the limelight in biomedical research because they play an important role in health and disease. Humans harbor an enormous diversity of commensals in various parts of the body, including the gastrointestinal and respiratory tracts. Advancement in metagenomic and other omic approaches, and development of suitable animal models have provided an unprecedented app...
متن کاملStimulating cROSstalk between commensal bacteria and intestinal stem cells.
Commensal gut bacteria benefit their host in many ways, for instance by aiding digestion and producing vitamins. In a new study in The EMBO Journal, Jones et al (2013) report that commensal bacteria can also promote intestinal epithelial renewal in both flies and mice. Interestingly, among commensals this effect is most specific to Lactobacilli, the friendly bacteria we use to produce cheese an...
متن کاملComparative In silico Analysis of Butyrate Production Pathways in Gut Commensals and Pathogens
Biosynthesis of butyrate by commensal bacteria plays a crucial role in maintenance of human gut health while dysbiosis in gut microbiome has been linked to several enteric disorders. Contrastingly, butyrate shows cytotoxic effects in patients with oral diseases like periodontal infections and oral cancer. In addition to these host associations, few syntrophic bacteria couple butyrate degradatio...
متن کامل